Showing posts with label Pythagoras. Show all posts
Showing posts with label Pythagoras. Show all posts

Monday, 2 July 2018

The Mathematics of Thales


Most of us who have gone to school, know of Pythagoras, Archimedes, and Euclid as the famous mathematicians of ancient Greece. Some of us have heard of other great mathematicians like Eratosthenes, Hipparchus, Apollonius, Aristarchus, etc. But, Thales?

Most schools of the world today, I suspect, teach science and mathematics from a predominantly European syllabus. This is partly an effect of European colonization of most of Asia and Africa, and dimunition of native populations in the Americas and Australia,  in the eighteenth, nineteenth and twentieth centuries of the Christian calendar.

I am currently reading a book titled “Archimedes” by Thomas Little Heath, originally published in 1920, on Kindle. It is a free download, and part of a Men of Science series.

“Greek authors from Heredotus downwards (meaning, after him) agree in saying that geometry was invented by the Egyptians and that it came into Greece from Egypt,” writes Heath.

He quotes an account : “Geometry is said to have been invented among Egyptians, its orgin being due to the measurement of plots of land. This was necessary because of the rising of the Nile, which obliterated (erased) boundaries appertaining to separate owners…. Thales first went to Egypt and thence introduced this study into Greece.”

What we know today as the Pythagoras theorem, about the hypotenuse of right angled triangles, is listed as Proposition 47 in Volume I of Euclid’s “Elements”, the standard European and Arab book of mathematics from the first to eighteenth centuries. The word Elements is the Greek word for Numbers, which in the eighteenth century was adopted into French, English etc for the most basic objects in Chemistry. The word Geometry is formed from two words Geo (Earth) and Metry (measurement). The Sanskrit word for measurement is Maatra. Greek and Sanskrit are part of the Indo European language family, so these words originate from the same root. The Sanskrit word for geometry is Shulba Sutra. Shulba is the Sanskrit word for rope or string; the earliest surviving books are not about  land measurement or business but measurement of altars for yajnas. Parallelly, jyotishaas (astronomers) developed a different stream of mathematics to determine time based on the movement of celestial objects.

“Thales, who had travelled in Egypt and there learnt what the priests could teach him on the subject, introduced GeoMetry into Greece. Almost the whole of Greek science and philosophy begins with  Thales. His dae was about 624-547 B.C. First of the Ionian philosophers, and declared one of the Seven Wise Men in 582-581, he shone in all fields, as astronomer, mathematician, engineer, statesman and man of business,” says Heath.

What fascinated me is what follows, which is Heath’s listing of the contributions of Thales to mathematics and astronomy.

In Astronomy, Thales:
  • Predicted the solar eclipse of 28 May, 585 BC
  •  Discovered the inequality of the four astronomical seasons
  • Counselled the use of the Little Bear instead of the Great Bear as a means of finding the pole (i.e. North Pole)

In Geometry, the following theorems are attributed to Thales:
  1. That a circle is bisected by any diameter
  2. That the angles at the base of an isoceles triangle are equal
  3. That if two straight lines cut one another, the vertically opposite angles are equal
  4. That if two triangles have two angles and one side respectively equal, the triangles are equal in all respects (what we now called Side-Angle-Side congruency)
  5. Was first to inscribed a right angled triangle in a circle, which means he was first to discover that the angle in a semi circle is a right angle.



Thales also solved two problems in practical geometry
  •         He showed how to measure the distance from the land, of a ship at sea (using Proposition 4 above)
  •         He measured heights of pyramids by means of the shadow thrown on the ground


Heath adds, “Their character (of the theorems) shows how the Greeks had to begin at the very beginning of the theory.”

Thales was a practical man, a businessman, and indulged in theoretical excursions perhaps as a pasttime. Pythagoras came a generation after him, and founded a school of mathematics. Euclid’s famous Elements is dated to the first century, AD, six hundred years after Thales. Pythagoras was interested in Mathematics as a leisure activity and an intellectual pursuit. So were most of this followers; his students and such people who pursued Geometry as an intellectual pursuit were collectively called the Pythagoreans. They coined the Greek word Mathemata (μάθήμάτα) from which comes the English tatbhava word Mathematics. The Greek word Mathemata literally means “Subjects of Instruction”.

Both Thales and Pythagoras traveled extensively around and past the shores of the Mediterranean sea, not just Egypt. Other historians of mathematics conjecture that Pythagoras traveled to Persia and perhaps even India. Ancient Greeks themselves acknowledge the Egyptian origins of their mathematics. Through formal and inductive methods, and intellectual pursuits, the Greeks elevated mathematics to a much higher levels, especially in Geometry. Strangely very few people of the Roman Empire that succeeded Hellenic Greece did not continue in this path, though the Persians and central Asians who acquired Greek books via Alexander of Macedonia’s conquest, did. Europe almost entirely abandoned mathematics and science for a millennium, until the emergence of Italian city states and Fibonacci’s ventures to Baghdad.

Pythagoras is introduced to us as the fountainhead of Greek mathematics, just as Aryabhata or some Vedic rishis are mentioned as the fountainhead of Indian mathematics. No mention is made at all of the Egyptian origins of Greek mathematics. Similarly while there are some references to Greeks and Romans in Indian mathematical texts, especially of Varahamihira, in those times, there was no attempt at studying the history of mathematics or acknowledging foreign elements borrowed.

I find Thales a fascinating character, more so perhaps than even Varahamihira. He reminds me of Benjamin Franklin, Antoine Lavoisier and Sir William Jones. And Mahendra Varma Pallava.

I strongly recommend Heath’s biography of Archimedes, from which I have excerpted. The list of his books and their titles also tell you what the level of mathematics was in Hellenic Greece. I also hope to read some biography of Apollonius, whom Simon-Pierre Laplace equates with Archimedes as the great mathematicians of ancient times.

On a linguistic note, you can read each letter in the word μάθήμάτα based on Greek letters use in modern mathematics texts – mu, alpha, theta, eta, mu, alpha, tau, alpha. Notice that Greek has separate letters θ and τ for tha and ta like Sanskrit and Tamil, whereas English doesn’t. So English has to use two letters th for the equivalent of theta or த. That’s another story for another occasion, another blog.

There seem to be some pictures or sculptures of Thales, though I don’t know if they are authentic.
Thales - source : Wikipedia
This one is from Wikipedia. Several Greek philosophers kings and others were depicted in paintings on vases, stone sculptures, bronzes, etc. Unfortunately such depictions in India were rare before the Gupta period; any pictures you see of mathematicians like Aryabhata, Bhaskara, or Varahamihira are entirely the product of recent artists’ imaginations.

Related Blogs and Videos

  1. Archimedes by Thomas Little Heath (free Kindle edition)
  2. Detailed article on Thales
  3. Video of my talk on Astronomy and Mathematics of Ancient Cultures
  4. My essay on Aryabhata (The Week magazine)
  5. Notes from Manjul Bhargava lecture on history of Indian mathematics
  6. Antoine Lavoisier


Sunday, 3 January 2016

Manjul Bhargava on Sanskrit and Mathematics


I attended the Lecture on "Sanskrit and Mathematics" by Fields Medallist Manjul Bhargava at the Kuppuswami Sastri Research Institute, Mylapore, which is part of the Sanskrit college. The following is my collection of notes, which I typed as he spoke. 

----------Begin Notes------

I thought I'd be meeting a small set of students and here is a full house, he begins.

Rich literature in Sanskrit, which is disappearing. Europeans preserving Latin and Greek. Most nations, Germany France Japan South Korea, teach science and math in local languages, one source of their wealth. They use English as second language. It's much easier to learn concepts in local language at young age. Lucky my grandfather was a Sanskrit scholar. At home we had a great library of classical Sanskrit texts. I learnt the Sulba Sutra as a child, before learning from Western books in mathematics. 

Pingala Chanda Sastra. I learnt a lot from Pingala. We have to do this scientifically, good translations, bring these alive in schools in correct accurate way. Repeats the phrase "correct accurate" several times.

(Brief interruption because some people can't hear properly. Actually I can hear, they may have a problem with the accent.)

Lots of treasures in ancient languages in India. Not just scientific, also poetry literature philosophy.

There is an initiative at Harvard, the Murty Classical Library. Which publishes five books each year, mostly translations, in English. Books that have never been translated into any language. Hope we can see them in Tamil Telugu Hindi Bengali, all Indian languages. Most of the translators not Indian because most researchers are not Indian. Yes there is a website (in response to a question). Several mentions of this Murty classical library.

{Some one in audience randomly pops another question. And he is asked to wait until Bhargava finishes.}

I have a great interest in history of mathematics. I learnt quite a bit of math from Indian works and then I would go to school and find out theorems named after some one else!

In most of my research I went to the original sources - Gauss Hemachandra etc. Instead of learning from how people thought about a concept in later centuries you can go to original source and find why that person thought that way and where he got his ideas. Nice to learn in its basic forms. There are insights in original sources that have been forgotten in later references or text books.

Bhargava lecturing at KSRI

I see debates in media about what ancient Indians or mathematicians knew. But they are often two sides just giving opinions with no evidence for what they are saying. Problem is some of these are not available in translation.

Not just translate but connect with the modern way of thinking. Not just Sanskrit but other sources too. How is it different? What inspired a concept? We need interests outside Sanskrit too.

Music and math interested me. Too vast literature, one has to specialise. Somethings I found about math. Only someone who knows Sanskrit and math can understand. And that's a small number. That is not acceptable.

I'll give three examples. "India's contribution to mathematics is zero." True, it's one of the contributions. India created the form in which numbers are used today. It  got transported to Arab world then to Europe who called them Arabic numbers. And now Indians call them Arabic numerals. 

We have to wait for USA to change the terminology.  US mathematics text books now call them Hindu Arabic numerals, because India won't take the lead. Perhaps we will copy from USA. In the Arab world, they are called Hindu numerals.

This system of numerals is incredible and this is one of the greatest achievements in human history. 

When Hindu numerals moved westwards they caused a revolution in mathematics but also in economics. You couldn't think about large numbers or more than a few thousand years. The concept that any number can be written with just ten symbols did not exist anywhere. And once it spread, it changed everything.

I feel ashamed that interest is greater outside India than here. India can help a lot.

There is a fantastic inscription in Gwalior. About 600AD. There is an even older inscription. Shahpur?

We liked to make large numbers and name them. Ten to the power 140. One word for this, in a manuscript I saw.

Phonetics of Sanskrit. Very important. Big revolution in 18th century after Europeans studied it. The Organization of sounds in Sanskrit is amazing. Two variables: one, the organ of speech,  where the sound is produced ; and two, eleven categories of modulation. This is Panini's contribution. You can't say of any other language that it's pronunciation has stayed unchanged for centuries. Basis of modern system of phonetics. Not just Sanskrit, Indian languages.

There was a big debate last year about Pythagoras theorem. Whether it was discovered in India. No shred of evidence that Pythagoras ever proved that theorem, whereas Sulba Sutra has clear evidence of proof.

Text books show no  historical context whatsoever. One gets no understanding of context and conditions under which some new concept was discovered.

Origins of trigonometry. Sine function originates in Aryabhateeya. The notion of jya is the origin of Sine and trigonometry.

Brahma Gupta is one of my great inspirations. One of the greatest mathematicians of all time. Gave the verse that translates to roots of quadratic equation. Every school boy should learn that. (Not integers??! ) . Negative numbers introduced by Brahma Gupta.

Fibonacci numbers. Called Hemachandra numbers in Sanskrit. Mentioned over and over, in Sanskrit texts, long before Fibonacci. Studied in several fields. Some think Fibonacci numbers mentioned in Pingala.

Objective clear history of development of ideas in India has never been written.

Pingala's Meru Prastara is called Pascal triangle in India. Is it clear in Pingala. Commentators before Pascal mention it. Meru Prastara shows one of the most important concepts in math and science, called binomial coefficients.

Yamatarajabhanasa. This sequence is not in Pingala Chanda Sastra but is in the oral tradition. What is the oldest written reference? Earliest reference is an English book in  1882. Balu sir mentions Don Knuth and Bhargava nods in agreement, but expresses frustration about not tracing it back to an older reference.

Calculus. Foundations developed by Madhava in India, which wrote in a mix of Malayalam and Sanskrit. Ramasubramaniam (of IIT Bombay) and his circle have brought this out, he says.

-----End of notes on Manjul Bhargava lecture -----

Gopu's comments

It may have been a slightly difficult lecture to follow for those not familiar with mathematics. The acoustics and the accent exacerbated the communication gap. But I found the speech delightful and ambitious. A Fields medalist with such a deep concern and curiosity about the history of mathematics, such a vivid knowledge of Sanskrit works, a deep passion to correct the fundamental lacunae in text book structure is a breath of fresh air.

His remarks on going to original sources, applies to every single field. I agree here most wholeheartedly. If pursued this is where the greatest good can happen in academia. Reading Aryabhata, VarahaMihira, Bhaskara, Lagadha in the original Sanskrit is a phenomenal experience. Even reading translations of their original works in English is far more informative than reading a book about them. This also applies to other fields. I have thoroughly enjoyed reading Adam Smith, Thomas Malthus, Charles Darwin, Henry Ford, Alfred Russel Wallace, Benjamin Franklin, GH Hardy, Thomas Huxley, in their original words. Even translations of Vitruvius, Plutarch, Al Beruni, Al Khwarizmi, Leonardo da Vinci etc. give us insights, which books about them simply cant.

Lynn Margulis mentions this philosophy of reading original sources in her description of course work at the University of Chicago.

I wrote a lament in September titled, "What did Brahmagupta do?" Bhargava's lecture answered that question  most resoundingly.

Bhargava confined himself to  mathematics and linguistics, leaving aside the Indian accomplishments in  Astronomy and medicine. Indian ignorance about the linguistic accomplishments in Sanskrit is stunning.

Brahmagupta discovered integers. This is a more fundamental breakthrough than even his sloka for the roots of a Quadratic Equation. And the Sulba Sutra of Apstambha gives the first irrational number, the square root of two. Bhargava mentioned Brahmagupta discovering negative numbers, but I don't think the public fully understands the impact.

They are obsessed falsely with Aryabhata gravity and revolution!  The Indian obsession with Pythagoras theorem also puzzles me. We should get a solid understanding of what Indians did rather than try to figure out how some India discovered something before some European - this sentiment reeks of an inferiority complex, not scientific curiosity. I think between Madhava and Jyeshtadeva they discovered infinitesimals. Whether this can be called calculus, I don't know. But I've not read either Madhava or Jyeshtadeva, so I can't judge. Newton and Leibniz discovered calculus after the advent of Cartesian geometry, which to my knowledge Indians did not develop.

Rajagopalan Venkatraman takes a photo of Bhargava after lecture at KSRI campus